STATA Note 5

One sample binomial data Confidence interval for proportion Unpaired binomial data: 2 x 2 tables Paired binomial data

One sample binomial data (Test for $\pi = \pi_0$)

One can in general be in one of two situations:

A. Data are available in the data file with one line per person (individual-level data).

Menu: <u>S</u>tatistics ► <u>P</u>arametric tests ► <u>1</u>-sample test of proportion

Insert data variable (must be a 1/0 variable) and π_0 .

Confidence level may be given in percentage.

Syntax: bintest datavariable = π_0 , level(95)

B. Data are summarised by the total number of observations (n) and the total number of successes (k) (summarised data). Can only use syntax.

Syntax: bitesti n k π_0

Example:

Syntax: bitesti 88 35 0.5

Output:

	N	0bs	erved	k	Ε>	kpected k		Assumed p	Obs	erved p
	88		35			44		0.50000		0.39773
Pr(k Pr(k Pr(k	<=	35)	k >=		=	0.034673	3	(one-sided (one-sided (two-sided	test)	

Exact confidence interval for proportion

Again we distinguish between the two situations.

Situation A.

Syntax: ci datavariable, b

Situation B.

Menu:

Calculator ▶ Binomial confidence interval

Insert number of observations (n), number of successes (k).

Confidence level may be given in percentage.

Syntax: Cii n k

Example:

Syntax: cii 88 35, level(95)

Output:

Variable	Obs	Mean	Std. Err.		. Interval]
	88	.3977273	.0521733	.2948726	.5076575

General on tables

One can in general be in one of two situations:

- A. Data are available in the data file with one line per person (individual-level data).
- B. Data are already tabulated; e.g. one has the table on paper (summarised data).

Situation A is straightforward:

Syntax: tabulate rowvariable columnvariable

Situation B is often dealt with in the following way:

Data:

	Sta	tus	_
Diagnosis	Alive	Dead	Total
1	1600	40	1640
2	1780	20	1800
Total	3380	60	3440

- 1. Generate two variables, Diagnosi and Status, and four observations, i.e. four lines with the values specifying the table (see item 2).
- 2. Generate a third variable counts containing the counts in the table:

DIAGNOSI	STATUS	COUNTS
1	Dead	40
1	Alive	1600
2	Dead	20
2	Alive	1780

3. Syntax: tabulate diagnos status [fweight=counts]

Output:

diagnos	status alive	dead	Total
1 2	1600 1780	40 20	1640
Total	3380	60	3440

Unpaired binomial data: 2 x 2 tables

Both in situation A and situation B proportions relative to **row or column total** may be calculated by adding the word row or column in the syntax-line, as for example:

Syntax: tabulate diagnos status [fweight=counts], row

A **chi-square test** is made adding the word chi2 after the comma in the syntax-line.

Further, if the table is sparse then **Fishers exact test** should be used. This is done typing exact after the comma in the syntax-line.

Stata can estimate the **risk difference**, **relative risks** (also called risk ratio) and **odds ratios**; all with confidence interval. But tables designed for the specific case should be used - Stata codes are in the following listed in parenthesis.

The risk difference and relative risks can be found using a cohort study (cs) or a matched case-control study (mcc). Odds ratios are typically estimated using case-control (cc) or matched case-control studies (mcc). Further help may be found in the Stata on-line help manual under epitab.

Such epidemiological tables are usually denoted as

	exposed	unexposed
cases	a	b
Non-cases	С	d

If you do not have data in the original form but data are already tabulated (i.e., *summarised data*), then the statistical analysis is made using the immediate commands in Stata. That is, an i is added in the syntax and data are in compact form typed as arguments of the command. For example, if the table on paper is in a form similar to the above table, then estimates of the risk difference can easily be found using the syntax of a cohort study.

Syntax: csi a b c d

Note: Epidemiologists use terms as exposed/unexposed and cases/non-cases, so output is presented in tables using these labels. However, the procedures (epitab) may be used for general analyses. One should just remember that exposed/unexposed divide data according to the two groups to be compared (for example, two treatments groups or men and women) and cases/non-cases divide data according to the outcome of interest, e.g. death and non-death (=survival).

Note: If you have individual-level data (i.e., the data file consists of one line of data per person) then the procedures are all used specifying the table command followed by case- and exposure-variables, e.g.

Syntax: cs case-variable exposure-variable

Note: The commands assume the subject to be a case if the *case-variable* is 1 and a non-case if the *case-variable* is 0. Further, the subject is considered as exposed if the *exposure-variable* is nonzero and not missing, to be unexposed if the *exposure-variable* is zero and will ignore a subject if the *exposure-variable* is missing.

<u>Example:</u> Comparison of two treatments.

We want to assess the value of a new treatment A in comparison with the old treatment B (exposed = treatment A and unexposed = treatment B). We want to compare the risk of dying, hence cases = deaths and non-cases = survived. Data are tabulated as

	Treatment A	Treatment B
Death	41	64
Survival	216	180

Syntax: csi 41 64 216 180

Output:

	Total	Unexposed	Exposed	
	105	64 180	41 216	Cases Noncases
	501	244	257	Total
	.2095808	.2622951	.1595331	Risk
Interval]	 [95% Conf.	estimate	 Point	
031695 .8637531 .5717163	173829 .4282837 .1362469	102762 082198 917802 009731	.60	Risk difference Risk ratio Prev. frac. ex. Prev. frac. pop
2 = 0.0047	7.98 Pr>chi:	 chi2(1) =	(-

Paired binomial data (McNemar's test)

In Stata McNemar's chi-squared test requires data to be represented as matched case-control data. Again if data are already tabulated the McNemar's chi-squared test is easily performed using the syntax.

Syntax: mcci a b c d

Example: Severe colds

Syntax: mcci 212 144 256 707

Output:

Cases		Controls Exposed	Unexposed	Total
τ	Exposed Unexposed	212 256		356 963
	Total	468	851	1319
McNemar's chi2(1) Exact McNemar sign				
Proport	ion with fa	actor		
		.2699014	[95% conf	. interval]
		0849128 .7606838		0547911 .837359

Note:

Stata do not use the continuity-corrected version of McNemar's test. Therefore minor differences may be found comparing with the notes for the "Postgraduate course in Biostatistics" or other statistical-programs.

odds ratio .5625 .4553956 .69259 (exact)

-.18061 -.0826098

The estimated proportions are

• Cases: the estimated risk of being exposed among cases.

rel. diff. -.1316099

- Controls: the estimated risk of being exposed among controls.
- Rel. diff: the estimated risk difference of being exposed relative to the risk of being unexposed among controls.
- The rest of the results are 'self-explained'.